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We applied a recently proposed rescaling of curvatures of eigenvalues of parameter-dependent random
matrices to experimental data from acoustic systems and to a theoretical result. It is found that the data from
four different experiments, ranging from isotropic plates to anisotropic three-dimensional objects, and the
theoretical result always agree with the universal curvature distribution, if only the curvatures are rescaled such
that the average of their absolute values is unity.
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I. INTRODUCTION

The usefulness of the study of statistical properties of ei-
genvalues and eigenvectors of quantum systems has been
demonstrated in many areas of physicsf1g. It has become
clear that these properties follow universal patterns that can
be modeled by probability distributions extracted from en-
sembles of random Hamiltoniansf2g of the same class of the
system under study. In particular, time-reversal invariant
physical systems whose underlying classical motion is cha-
otic have correlated spectra with statistical properties consis-
tent with the predictions of the Gaussian orthogonal en-
semblesGOEd random matrix model. This result has been
confirmed by analyses numerically performed for two de-
grees of freedom systemssone particle in a two-dimensional
boxd, but also by experimentally studying resonances of mi-
crowave cavities with adequate boundaries or of quartz or
metallic blocksselastodynamicsd ssee, for instance, contribu-
tions by Richter f3g, Stöckmannf4g, Ellegaard f5g, and
Schaadtf6gd.

In a pioneering work Wilkinson started the investigation
of the dynamical aspect of the same problem, namely, how
the correlations manifest themselves in the flow of the levels
when an external parameter is variedf7g. A random matrix
model has then been constructed to investigate the statistical
properties of the firstsvelocitiesd and the secondscurvaturesd
derivatives of GOE eigenvalues with respect to an ad-
equately defined parameter. It has been found that the veloci-
ties are Gaussian distributed while the curvatures, after an
appropriate rescaling, follow the simple distribution given by
f8,9g

Pskd =
1

2s1 + k2d3/2. s1d

Large curvatures are produced by close encounters and
they probe repulsion between neighboring pair of levels. A
simple estimationf10g shows that the power decayuku−3 pre-
dicted for large curvatures by the above equation follows
from the linear behavior of the repulsion between GOE ei-
genvalues. Another feature of this distribution is that the cur-
vatures were normalized in such a way that the average of
their modulus is equal to one, i.e.,kukul=1 with the quantity

kukul playing the same role the average density plays in the
usual level statistics. One and the other give in the respective
dynamical and static cases, respectively, the scaling neces-
sary to be able to talk about universality.

The difficult task of checking experimentally this predic-
tion was undertaken by the experimental group at the Center
for Chaos and TurbulencesCATd of the Niels Bohr Institute.
They studied the dependence on different external param-
eters of the spectrum of frequencies of four systems ranging
from isotropic plates to anisotropic three-dimensional ob-
jects. The statistical properties for fixed value of the param-
eters were verified to follow the GOE statistics. The mea-
sured curvature distributions have shown slight but
significant deviations from the above theoretical prediction.

By analyzing the data relative to a quartz block in which
the temperature was the parameterf11g, it has been shown
however in Ref.f10g that the agreement with the universal
prediction is remarkable if one rescales the curvature such
that it satisfies the requirement that their average is equal to
one, as is implied by Eq.s1d. We extend here this procedure
to the others systems studied by the CAT group. We show
that rescaling the data the results of all four experiments
agree remarkably with the universal curvature distribution.

The same procedure is also successfully applied to a the-
oretical curvature data obtained with the so-called Robnik

TABLE I. Overview of the parameters that govern each of the
experiments. The first column specifies the system under study. The
following columns contain the quality factor value of the system at
a typical frequency, the typical level number, the number of levels
included in the study, the number of parameters values, the ratio of
the resonance width to the mean level spacing, the range covered on
the normalized parameter axis, the ratio of the typical wavelength to
the size of the system, and the number of independent points,
roughly, in frequency-parameter space for calculation of statistical
quantities like the curvature distribution.

System Q N n« nx G /D xmax L /l n«sx+1d

sad 104 23102 171 63 30 3.3 5 735

sbd 104 33102 275 63 30 2.0 7 825

scd 105 13103 466 59 25 0.8 6 839

sdd 105 33103 709 101 15 1.8 7 1276
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billiard sa quadratic conformal map of the unit diskd by vary-
ing its shape parameterf12g. The complete disagreement
with Eq. s1d shown by the initial data has been reduced in
Ref. f13g by the introduction of an appropriate unfolding
procedure of the parameter. We show that the agreement be-
comes better if the curvatures are rescaled.

II. EXPERIMENTAL SETUP

Using an HP 3589A spectrum / network analyzer and pi-
ezoelectric transducers, we measure ultrasound transmission
spectra of solid objects. There are three such transducers, of
which one is transmitter and two others are receivers. The
temperature of the system is kept constant to within 0.005 °C
using a temperature controller, such that the eigenfrequencies
are not affected by the fluctuations in room temperature. The
pressure of the air surrounding the sample can be controlled
and kept at a low value where air damping of the vibration is
insignificant. During measurements, the system is resting
only on three tiny spikes, making the vibrations as close to
free as possible. For a more detailed description of this setup
see Ref.f14g.

III. EXPERIMENTS

Parametric experiments were carried out on four different
systems. The first experimentsad was carried out on an alu-
minum plate cut in the shape of a quarter stadium with a slit
cut on one face to break the mirror symmetry through the
middle plane of the plate. This ensures that flexural and in-
plane modes are completely mixed, seef15g for details. The
parameter was the size of the straight line section in the
stadium. The second experimentsbd was carried out on an
aluminum plate cut in the shape of one quarter of the Sinai-
stadium, but this time no slit was cut to mix modes. Instead,
the two mode classes were separated experimentally using
the air pressure, and the flexural modes were selected for

analysis. The eigenfrequencies were perturbed by gradually
cutting off material from the platef16g. The third experiment
scd was carried out on a three-dimensionals3Dd system, a
block of monocrystalline quartz cut in the shape of one
eighth of a 3D Sinai billiardf17g. The block was carefully
polished with fine grinding powder in order to perturb the
eigenfrequencies by removing mass. The fourth experiment
sdd was carried out on similar block, but this time the tem-
perature was used as the external parameter. In Table I the
most important information about the experiments is given.
Finally, the fifth systemsed was a theoretical result from
Robnik billiard performed by Leboeuf and Sieberf13g.

IV. FITTING THE SPAGHETTI

The eigenfrequencies of measured resonance curves are
determined using an interactive software tool that we have
developed in the programming language IDL. The user
points out a resonance on the screen, and the software fits the
data with a “skew Lorentzian,” seef18g for details, whose
parameters include the eigenfrequency and the width. Once
the eigenfrequencies are determined, the unfolding procedure
is performed by fitting their cumulative density with a third
order polynomial from which the new spectrum with a uni-
tary average density is extracted.

In Fig. 1 we plot the unfolded frequencies as function of
the mass removed. As one can see, the “spaghetti strings”
corresponding to raw data contain noise. Since we are inter-
ested in slopes and curvatures, we must deal with this noise.
We find that some standard noise reduction schemes, like
smoothing, fitting and low pass filtering, cannot do a suffi-
ciently good job. In our case, however, the following two
points are bound to complicate any attempt to reduce noise:
For some level, sayei, no prediction for the functioneisTd
exists, i.e., we cannot just fit some function to the spaghetti
string. In fact, the level motion is known to be very compli-
cated. We know that the saghetti strings have curvatures on
all scales. In particular since we are interested in the tail of
the curvature distribution, it is of great importance that the
large curvatures are not altered by the noise reduction. We
decided to use the algorithm explained in the following.
Consider a point on some spaghetti stringeisTd, correspond-
ing to the parameter valueT=T8. Fit a polynomial to the
2n+1 points that include the point in question and then
neighboring points on both sides. If the polynomial isPsTd
=aT2+bT+c, the slope and curvature of the spaghetti string
at the considered point is simply 2aT8+b and 2a, respec-
tively. The parametern is a constant of the algorithm and
must be determined such that 2n+1 is larger than the typical
size of the noise but still small enough to satisfy locality. An
improved version was introduced, wheren is determined by
the curvature in a converging procedure. The idea is that for
a point on the spaghetti string where the curvature is large,
one should use a smalln to make sure that the polynomial
really follows the sharp curve of the spaghetti string, whereas
for a point of small curvature one should use a largern to
avoid fitting the noise. The algorithm starts out settingn
=N where N is an intermediate value and then fitsPsTd
=aT2+bT+c to the 2n+1 points in question. The resulting

FIG. 1. Unfolded eigenfrequencies of the quartz block plotted as
function of the mass removed from one surface of the block with
polishing powder.

BRIEF REPORTS PHYSICAL REVIEW E71, 037201s2005d

037201-2



curvature 2a is translated into a new value ofn=ns2ad ac-
cording to the above mentioned idea. This step is continued
until the resulting curvature stays the same, i.e., the value of
the curvature has converged to some number. This algorithm
is used for every point on every spaghetti string and the
resulting slopes and curvatures are stored for analysis. Tests
show that the results are independent of the choice ofN,
which is reassuring.

V. CURVATURES

The normalization of the curvatures start by replacing the
physical parameterT by a new dimensionless parametert
such thatf13g

dt

dT
=ÎKS de

dT
D2L , s2d

where the average is made over the whole set of unfolded
eigenfrequencies at a given value ofT. The level curvature is
then defined in terms of these new scaled variables as

k =
1

p

d2e

dt2
=

1

pkė2l
Së −

kėël
kė2l

ėD , s3d

where the dots denote derivatives with respect to the physical
parameterT. In Eq. s3d, 1 /p is exactly the factor that nor-
malizes the curvatures in the context of random matrix
theory. The experimental data were fitted with the one pa-
rameter distribution

Pskd =
g2

2sg2 + k2d3/2 s4d

with g=kukul. The results of the fitting for the five systems
are shown in Fig. 2 and in Table II. The small values of
chi-square show that the agreement with the data is not only
visual. We do not observe any correlation between the values
of g in Table II and the material of the samples or the exter-
nal parameter used.

VI. DISCUSSION AND CONCLUSION

In conclusion, we have shown that the rescaling intro-
duced in Ref.f10g makes experimental and theoretical data
of level curvatures to agree with the universal distribution
Eq. s1d. We draw from these results that random matrix
theory correctly predicts the functional form of the curvature
distribution but the curvature normalization factor. This fac-
tor has to be extracted from the data. We remark that this
feature has also been observed in the case of another para-
metric distribution, the level correlation function, whose uni-
versality has been experimentally studied using quantum
dots f19g.

A clue to understand why the random matrix normaliza-
tion factor 1/p is not sufficient is maybe provided by the fact
that in all the present systems the averageksde /dTd2l defin-
ing the new unfolded parameter is not a constant during the
evolution. As a consequence, in the definition of the scaled
curvature Eq.s3d the first derivative is subtracted from the
second derivative.

Before concluding, we add that authors have attributed
discrepancies with the universal curve to the presence of

FIG. 2. Curvature distributions for the five systems. In the first
column the curves correspond to Eq.s1d; in the second column they
are the fitted curves using Eq.s4d.

TABLE II. The fitted parameters from the method of least
squares for the five systems corresponding to the rescaled curves in
the second column in Fig. 2.

System g x2

Stadium plate–slit cut,sad 1.23 2.1310−5

Sinai-stadium plate,sbd 0.95 6.9310−5

3D Sinai billiard–mass,scd 1.18 1.5310−5

3D Sinai billiard–temperature,sdd 1.30 9.3310−6

Robnik billiard, sed 1.42 5.3310−4
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symmetriesf20,21g. Without ruling out completely this pos-
sibility we argue that symmetries should reduce the repulsion
between levels and, as a consequence, make their trajectories
closer to straight lines increasing and not reducing small cur-
vatures as observed in the systems being here analyzed.
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